If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+555t
We move all terms to the left:
0-(-16t^2+555t)=0
We add all the numbers together, and all the variables
-(-16t^2+555t)=0
We get rid of parentheses
16t^2-555t=0
a = 16; b = -555; c = 0;
Δ = b2-4ac
Δ = -5552-4·16·0
Δ = 308025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{308025}=555$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-555)-555}{2*16}=\frac{0}{32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-555)+555}{2*16}=\frac{1110}{32} =34+11/16 $
| -7(m-6)=-70 | | 27^{3x-4}=81 | | 72=10c+8c | | –3y=3−4y | | 5d-7=-7+5d | | -15r+20=12-16-15r | | 3^n=218 | | 1=1/5a | | 12x-18=7x+7 | | 81=4+7y | | m+4/3=3 | | 4^(6x-7)=13 | | 6q+2=-4+9q | | -8-4u=1-5u | | m/15=32 | | -26+m=44 | | -8-5s=-3-5s | | 28=12+2r | | 6(2x-3=9x+7-2x | | 4m+20m+-3m+13=-8 | | 6u+8=6u | | 4(2x-1)+6=7x-2(x+2) | | 5y-1-2y+9=23 | | 5c=5c+5 | | 5-2x+1=14 | | 13–3p=43 | | -7-10f=-10f+3 | | w^2-22w+121=0 | | -5=-3+8s | | 5+j=j+5 | | –d+62=1 | | 15.3+1h=1.31h |